BTCBasic2

区块链基础part2-北大肖臻老师&Chainlink预言机 China学习笔记

1. BTC共识协议

数字货币中经常出现的问题

  • 双花攻击

    数字货币本身为带有签名的数据文件,可以进行复制。即:对用户来说,可以将同一货币花费两次。

    修改:对货币添加唯一编号(不可篡改),每次支付向货币发行单位查询真伪。
    该方法每次交易都需要依赖于第三方机构来判断货币真伪且防止双花攻击。是一个典型的第三方中心化方案。现实中,我们通过支付宝、微信、信用卡等各种支付方式交易时,必然会依赖于第三方机构。由于这些第三方机构具有较高的可信度,有政府进行背书,所以可以采用这种方案。
    但是,很多场景下,并不存在这样一个可信赖的第三方机构。基于这个背景,以去中心化思想为核心的比特币系统便吸引了人们的注意力。

去中心化需要解决的问题

  • 数字货币的发行由谁执行?如何发行?发行多少?什么时候发行?

    在传统中心化货币体系中,这些问题我们可以交给第三方机构(如:央行)。当引入去中心化思想后,系统中节点平等,交易不通过第三方,那么货币发行权的分配必然是一个需要解决的问题。

    在比特币系统中由挖矿来决定货币发行权和发行量。

  • 如何验证交易是否有效?如何防止双花攻击?

    同样,在传统中心化体系中,该问题的解决由第三方机构来完成。而剔除这一机构后,交易双方如何能够验证交易的有效性?如何防止系统中恶意用户作恶获取收益?这也是去中心化交易系统需要解决的问题。

    该问题的解决,依赖于系统中维护的一个数据结构,记录货币的使用情况(是否被花过?被谁花过?)。该数据结构由系统中全体用户共同维护,保证了交易的有效性。该数据结构,便是区块链。

    案例说明

    如下,假定A获得铸币权,新发布了10个比特币(该交易称为铸币交易)。A将10个比特币转给了B(5个)和C(5个),A对该交易进行签名,同时该交易需要说明所花掉10个比特币来源(来自铸币交易)。之后,B将自己的5个比特币转给C(2个)和D(3个),该交易需要B的签名,该交易需要说明所花掉的5个比特币来自于第二个交易中。然后,C将自己所拥有的全部7个比特币都转给E,并对该交易签名,可以发现该交易中C的比特币来源于两个交易中。这样,就构成了一个简单的区块链。

    【红色部分为比特币来源】

    需要注意的是,这里面有两种哈希指针。第一种为指向前面的区块(白色),使得各个区块形成链,第二种则是为了说明比特币的来源(红色)。说明比特币的来源并非凭空捏造,可以防止双花攻击。
    在进行交易时,需要付款人的签名和收款人的地址,在比特币系统中,该地址即为收款人的公钥的哈希。可以将其视为银行账户,根据此进行转账交易。(虽然公钥可以公开,但实际中更多公开的是公钥的哈希)
    在交易中,收款方需要知道付款方的公钥,从而验证A签名是否有效。即A需要提供自己的公钥,如果所提供公钥与铸币交易中。(实际上其他节点都需要知道付款方公钥,验证交易合法性)实际中A转账时候提供的公钥需要和铸币交易中公钥对的上,这样就防止了恶意节点伪造A的公钥来“偷”走A的比特币。
    在比特币系统中,通过执行脚本实现上述验证过程。将当前交易输入脚本与前一个交易输出脚本(说明币的来源的交易)拼接执行,如果可以正确执行,说明交易合法。
    在该图中,一个区块仅含有一个交易,实际中一个区块中包含多个交易,交易通过Markle Tree(详见比特币数据结构篇中)组织起来,在区块中存储。

    比特币区块信息

    block Header(区块宏观信息) block body
    Version(版本协议)
    Hash of previous block header(指向前一个区块指针)
    Merkle root hash(默克尔树根哈希值)
    target(挖矿难度目标阈值)
    nonce(随机数)
    1. 挖矿求解问题:Hash(block header)<=target
    2. Hash of previous block header只计算区块块头部分的哈希( Merkle root hash保证了block body内容不被篡改,所以只需要计算block header即可保证整个区块内容不会被篡改)
    3. 区块链系统中,轻节点(只存储区块block header信息)只利用区块链,但并不参与区块链系统维护和构造。

    分布式共识

    可否各个节点独立完成区块链构建?
    很明显不行,各个节点独立打包交易,形成区块链,必然无法避免区块链内容不一致。从分布式系统角度来说,账本内容需要取得分布式共识,从而保证区块链内容在不同节点上的一致性。

根据FLP不可能结论,在一个异步系统中,网络时延无上限,即使只有一个成员是有问题的,也不可能达成共识。
根据CAP Theorem(Consistency一致性、Availability可靠性、Partition tolerance容错性),任何一个分布式系统中,最多只能满足其中两个性质。
分布式共识中协议Paxos 可以保证Consistency(若达成共识必然一致),但在某些情况下,可能会一直无法达成共识。【在这里附上一个Paxos协议详解:https://my.oschina.net/u/150175/blog/2992187】

比特币共识协议

背景:假设系统中存在部分节点有恶意,但存在比例较小。大多数节点为“好”的节点,在这种情况下进行共识协议设置。
想法1:直接投票
某个节点打包交易到区块,将其发给其他节点,其他节点检查该候选区块,检查若正确投赞成票,若票数过半数,加入区块链。
存在的问题1——恶意节点不断打包不合法区块,导致一直无法达成共识,时间全花费在投票上。
存在的问题2——无强迫投票手段,某些节点不投票(行政不作为)。
存在的问题3——网络延迟事先未知,投票需要等多久?效率上会产生问题。
更大的一个问题——membership。如果是联uoyi s盟链,对加入成员有要求,可以基于投票。但比特币系统,任何人都可以加入,且创建账户及其简单,只需要本地产生公私钥对即可。只有转账(交易)时候,比特币系统才能知道该账户的存在。这样,黑客可以使用计算机专门生成大量公私钥对,当其产生大量公私钥对超过系统中一半数目,就可以获得支配地位(女巫攻击)。所以,这种简单的投票方案也是不可行的。

比特币系统中采用了很巧妙的方案解决这个问题。虽然仍然是投票,但并非简单的根据账户数目,而是依据计算力进行投票。
在比特币系统中,每个节点都可以自行组装一个候选区块,而后,尝试各种nonce值,这就是挖矿。[H(block header)<=target]
当某个节点找到符合要求的nonce,便获得了记账权,从而可以将区块发布到系统中。其他节点受到区块后,验证区块合法性,如果系统中绝大多数节点验证通过,则接收该区块为最新的区块并加入到区块链中。

  1. 会不会合法区块被拒绝?
    如图所示。发生分叉的情况下,暂时保存分叉情况,但区块链只承认最长合法链,随着时间推移,必然存在某一条链变成最长合法链。这样,也就会导致合法区块被拒绝
  2. 分叉攻击
    如图所示,A用户对上面的A转账给B的记录回滚,从而非法获取利益。在两条链上,发现交易都合法。这是一个典型的双花攻击。A给B转账后,用分叉攻击将钱又转回来,覆盖掉原来的记录。
    在比特币系统中,这种情况实际上很难发生。因为大多数矿工认可的是最长的合法链,会沿着上面的链继续挖下去。而A这个攻击者要想回退记录,就必须使得下面的链变得比上面的链还长。理论上来说,攻击者需要达到整个系统中51%的计算力,才能使得这种攻击成功。 此外,区块链正常运行场景下,也可能会发生分叉。当两个节点同时获得记账权时,会有两个等长的合法链。在缺省情况下,节点接收最先听到的区块,该节点会沿着该区块继续延续。但随着时间延续,必然有一个链胜出,由此保证了区块链的一致性。(被扔掉的区块称为“孤儿区块”)

可见,依赖于算力竞争,有效的防止了“女巫攻击”。

比特币激励机制

为什么系统中节点要竞争记账权?需要提供算力和电力成本,节点为什么要去做?

比特币系统设计之初便考虑到了这个问题,那就是引入激励机制。比特币通过设置出块奖励来解决该问题,一个获得合法区块的节点,可以在区块中加入一个特殊交易(铸币交易)。事实上,这种方式也是唯一一个产生新比特币的途径。

比特币系统设计规定,起初每个区块可以获得50个比特币,但之后每隔21万个区块,奖励减半。

但是这样就可以了吗???
区块中保存交易记录,那么,会不会存在节点只想发布区块而不想打包交易?中本聪在设计该系统时,引入了交易费。在一个区块中,其输入>=输出,差值便是给区块所属节点的手续费。这些会在后续文章中详细说明。

2.BTC具体实现

区块链是一个去中心化的账本,比特币采用了基于交易的账本模式。然而,系统中并无显示记录账户包含比特币数,实际上其需要通过交易记录进行推算。在比特币系统中,全节点需要维护一个名为**UTXO(Unspent Transaction Output尚未被花掉的交易输出)**的数据结构。

如图,A转给B五个BTC,转给C3个BTC,B将5个BTC花掉,则该交易记录不保存在UTXO中,C没有花掉,则该交易记录保存在UTXO中

UTXO集合中每个元素要给出产生这个输出的交易的哈希值,以及其在交易中是第几个输出。通过这两个信息,便可以定位到UTXO中的输出。

为什么要维护这样一个数据结构???
为了防范“双花攻击”,判断一个交易是否合法,要查一下想要花掉的BTC是否在该集合中,只有在集合中才是合法的。如果想要花掉的BTC不在UTXO中,那么说明这个BTC要么根本不存在,要么已经被花过。所以,全节点需要在内存中维护一个UTXO,从而便于快速检测double spending(双花攻击)。

每个交易会消耗输出,但也会产生新的输出。

如图,A转给B5个BTC,之后B将其转给D,则UTXO中会删掉A->B这一交易记录,同时会添加B->D这一交易记录。

假如有人收到BTC转账,但一直不花,那么这个信息会一直保存在UTXO中。这种情况可能是该用户不想花这些BTC(如:中本聪) ,也有可能是忘记了私钥导致无法花掉。所以,UTXO是逐渐增大的,但该数据目前来说,一个普通的服务器硬盘中是可以完全保存这些数据的。

每个交易可以有多个输入,也可以有多个输出,但输入之和要等于输出之和(total inputs = total outputs)。
存在一些交易的total inputs 略大于 total outputs,这部分差额便作为交易费,给了获得记账权的节点。在公开课笔记4中最后提及到“区块中保存交易记录,如果仅仅设置出块奖励,那么,会不会存在节点只想发布区块获得出块奖励而不想打包交易?”
因此,BTC系统设计了Tranction fee(交易费),对于获得记账权节点来说,除了出块奖励之外,还可以得到打包交易的交易费。但目前来说,交易费远远小于出块奖励。等到未来出块奖励变少,可能区块链的维护便主要依赖于交易费了。

BTC系统中每21万个区块,BTC出块奖励减半。根据下图计算,基本上出块奖励每4年减半。

比特币是基于交易的模式,与之对应,还有一种基于账户的模式(如:以太坊)。基于账户的模式要求,系统中显示记录账户余额。也就是说,可以直接查询当前账户余额是多少货币。可以看到,比特币这种模式,隐私性较好,但其也付出一定代价。在进行交易时,因为没有账户这一概念,无法知道账户剩余多少BTC,所以必须说明币的来源(防止双花攻击)。而基于账户的模式,则天然地避免了这种缺陷,转账交易就是对一个(多个)账户余额的数字减和另一个(多个)账户余额的数字加

BTC系统中具体的区块信息

如下图所示,为一个区块的信息(取自视频中截图,源自blockchain.info)

  • 什么是挖矿?
    可以看到,区块哈希与前一区块哈希都是以一长串0开头的,挖矿本身就是尝试各种nonce,使得产生的区块哈希值小于等于目标阈值。该目标阈值,表示成16进制,就是前面含有一长串的0

下为block header的代码中实现的数据结构。里面的几个域在公开课笔记4中(比特币区块信息)已经解释过了,这里不再赘述。

可以看到,nonce是一个32位的无符号整型数据,在挖矿时候是通过不断调整nonce进行的,但可以看到,nonce的取值最多为2^32(2的32次方)种。但并非将这些nonce全部遍历一遍,就一定能找到符合要求的nonce。由于近年来,挖矿人员越来越多,挖矿难度已经调整的比较大了(关于难度调整请关注后续博文,会有专门一篇介绍难度调整),而2^32这一搜索空间太小,所以仅调整nonce很大可能找不到正确的结果。

还有哪些域可以调整呢?

下图为block header中对各个域的描述。而仅仅调整nonce是不够的,所以这里可以通过修改Merkle Tree的根哈希值来进行调整。

思考:打包的交易和顺序确定了,根哈希值不就确定了吗?这个怎么能修改呢?

铸币交易(coinbase交易)

在公开课笔记4中提及,每个发布区块者可以得到出快奖励,也就是可以在区块中发布一个铸币交易(coinbase交易),这也是BTC系统中产生新比特币的唯一方式。下为一个铸币交易的内容:

可以看到,有一个CoinBase鱼,其中可以写入任何内容,在这里写什么都没有影响。所以可以在这里添加一些任意信息,便可以实现无法篡改(也无法删除)。(例如:提前写入股票预测结果的哈希值、写入人生感谢,写入爱情誓言(无法删除,想想删不掉十年前发表的QQ空间非主流说说是痛苦吧,嘿嘿嘿))
所以,只要我们改变了写入内容,便可以改变Merkle Tree 的根哈希值。

下图为一个小型的区块链,假定左下角交易为coinbase交易,可以看到,该交易发生改变会逐级向上传递,最终导致Merkle Tree根哈希值发生改变。

所以,在实际的挖矿中,包含两层循环。外层循环调整coinbase域(可以规定只将其中前x个字节作为另一个nonce),算出block header中根哈希值后,内层循环再调整nonce。

普通转账交易

如果将输入脚本和输出脚本拼接起来可以顺利执行不出现错误,则说明交易合法。

挖矿过程的概率分析

挖矿本质上是不断尝试各种nonce,来求解这样一个puzzle。每次尝试nonce,可以视为一次伯努利试验。最典型的伯努利试验就是投掷硬币,正面和反面朝上概率为p和1-p。在挖矿过程中,一次伯努利试验,成功的概率极小,失败的概率极大。挖矿便是多次进行伯努利试验,且每次随机。这些伯努利试验便构成了a sequence of independent Bernoulli trials(一系列独立的伯努利试验)。根据概率论相关知识知道,伯努利试验本身具有无记忆性。也就是说,无论之前做多少大量试验,对后续继续试验没有任何影响(车牌摇号也是如此,,心痛….)。
对于挖矿来说,便是多次伯努利试验尝试nonce,最终找到一个符合要求的nonce。在这种情况下,可以采用泊松分布进行近似,由此通过概率论可以推断出,系统出块时间服从指数分布。(需要注意的是,出块时间指的是整个系统出块时间,并非挖矿的个人)

系统平均出块时间为10min,该时间为系统本身设计,通过难度调整维护其平均出块时间。
指数分布本身也具有无记忆性。也就是说,对整个系统而言,已经过去10min,仍然没有人挖到区块,那么平均仍然还需要等10min(很不符合人的直觉)。也就是说,将来要挖多久和已经挖多久无关。

虽然这样看起来是一个冷酷的事情,过去的工作可能都会白做。但实际上这才是挖矿公平性的保障。对算力有优势的矿工来说,其之前所做大量工作仍有可能会白费。

比特币总量计算

也就是说,比特币系统中已经挖出和未挖出的比特币总数便是2100万个。
实际上,挖矿这一操作并非在解决数学难题,而是单纯的算力比拼。也就是说,挖矿这一过程并没有实际意义,但挖矿这一过程,却是对比特币系统的稳定起到重要维护作用。
所以,只要大多数算力掌握在好的节点手中,便能够保障比特币系统的稳定。

比特币越来越难被挖到,且出块奖励越来越少,是否说明其未来挖矿的动力将越来越低呢?
实际上,恰恰相反。在早期比特币很容易挖到的时候,比特币并不被人们所看好,而后,比特币估值上涨,吸引其他人参与挖矿,又进一步促进了比特币价值上涨,进而又吸引更多人参与进来。
当出块奖励趋于0时,则整个系统将依赖于交易费运行,届时交易费将成为维护比特币系统运行的重要保障。

比特币系统安全性分析

大多数算力掌握在好的用户手中,能否保障不良交易记录不会被写入区块链?
需要注意的是,算力低的用户并非完全不能获得记账权,仅仅是概率上较低的问题。但实际上,即使拥有少量算力的恶意节点,也有一定概率获得某个区块的记账权。

    1. 可否”偷币”?(恶意节点能不能将其他账户上比特币转给自己?)
      答案:不能。因为转账交易需要签名,恶意节点无法伪造他人签名。加入其获得记账权并硬往区块中写入该交易,大多数用户会认为其是一个非法区块,大多数算力将不认可该区块,从而沿着其他路径挖矿,随着时间推移,拥有大多数算力的诚实的节点将会仍然沿着原来区块挖矿,从而形成一条“最长合法链”,该区块变成孤儿区块。对于攻击者来说,不仅不能偷到其他人的比特币,而且得不到出块奖励,还浪费了挖矿花费的电费等成本。
    1. 可否将已经话过的币再花一遍?

      如下图1,若M已经将钱转给B,现在想再转给自己,假设其获得记账权,若按照图1方式,很明显为一个非法区块,不会被其他节点承认。

      所以,M只能选择图2方式,将M转账给B的记录回滚掉。这样就有了两条等长合法链,取决于哪一个会胜出。(如果上面交易产生不可逆的外部效果,下面交易回滚便又拿回钱,从而不当获益)

      需要注意的是,再挖矿之初便要选择上一个区块是谁。也就是说,并不是获得记账权之后才选择插入到哪一个区块之后。

如何防范这种攻击???
如果再M->B这个交易之后还延续有几个区块,如下图所示,则大多数诚实节点不会承认下面的链。所以,便变成了恶意节点挖下面的链,其他节点挖上面的链的算力比拼。由于区块链中大多数节点为善意节点,则最终上面链会胜出,而恶意节点的链会不被认可,从而导致投入成本白费。

所以,一种简单防范防范便是多等几个确认区块。比特币协议中,缺省需要等6个确认区块,此时才认为该记录是不可篡改的。平均出块时间10min,六个确认区块便需要1小时,可见等待时间还是相对较长的。

    1. 可否故意不包含合法交易?
      可以,但是可以等待后续区块包含,所以问题不大。实际运行中,可能由于某段时间实际交易数太多,而一个区块包含交易数存在最大值,导致某些合法交易并未被写入区块链(等待后续区块写入)。
    1. selfish mining

      提前挖到但不发布,继续挖下去,等到想要攻击的交易等了6次确认认为安全之后将整条链发布出去,试图回滚原来记录。这种情况,需要恶意节点掌握系统中半数以上算力才行,否则无法成为最长合法链。

      selfish mining有好处吗?
      如图所示,假使挖到2号时候先不发布,则其他人仍然需要挖1号区块,若其算力足够强,能保证别人挖出1之后可以挖出3.可以此时将2和3一起发布,从而将1区块所在链最长合法链挤掉(减少了别人和自己竞争挖3号区块)。
      但这样存在风险,如果别人已经挖出1,自己还没挖出3,则需要尽快发布2和别人竞争最长合法链地位。

需要注意的是,比特币系统中,假如发生以下情况,各个节点以自己先收到的区块所在链为主链,对后收到的合法区块会不予认可(但会先保存起来)。此时便变成了两批算力分布挖1和2,具体哪一个成为主链,取决于哪一条链先挖到下一个区块,使得两个等长合法链出现长短不一致,最终胜者成为最长合法链。

3.BTC网络

比特币系统的工作过程:
用户将交易发布到比特币网络上,节点收到交易后打包到区块中,然后将区块发布到比特币网络上,那么新发布的交易和区块在比特币网络上是如何传播的呢?

比特币网络的工作原理

比特币工作于网络应用层,其底层(网络层)是一个P2P Overlay network(P2P覆盖网络)。比特币系统中所有节点完全平等,不像一些其他网络存在超级节点(super node)。要加入网络,至少需要知道一个种子节点,通过种子节点告知自己它所知道的节点。节点之间的通信采用了TCP协议,便于穿透防火墙。当节点离开时,只需要自行退出即可,其他节点在一定时间后仍然没有收到该节点消息,便会将其删掉。

比特币网络设计原则:简单、鲁棒(最坏情况下能达到最优状况,即健壮性)而非高效
每个节点维护一个邻居节点集合,消息传播在网络中采用洪泛法,某个节点在收到一条消息会将其发送给所有邻居节点并标记,下次再收到便不会再发送该消息。邻居节点选取随机,未考虑网络底层拓扑结构,也与现实世界物理地址无关。该网络具有极强鲁棒性,但牺牲了网络效率。

比特币系统中,每个节点要维护一个等待上链的交易集合。第一次听到交易,若是合法交易,则将其加入该交易集合并转发给邻居节点,以后再收到该交易就不再转发(避免网络上交易无线传输)。假如网络中存在两个冲突交易,如交易1:A->B,交易2:A->C(假设花费的同一笔钱)。具体接收哪个取决于节点先接收到哪个交易,之后收到另一个交易会将其放弃。

假如某个节点先听到A->B,但又听到A->C已经上链,则此时A->B为非法交易,所以要再等待上链交易集合中删除A->B

新发布区块在网络中传播方式与新发布交易传播方式类似,每个节点除检查该区块内容是否合法,还要检查是否位于最长合法链上。区块越大,则网络上传输越慢。BTC协议对于区块大小限制为不大于1M大小。

区块大小越大,网络上传播时延越长;区块大小越小,则可以包含的交易数目越少。

此外,比特币网络传播属于Best effort(尽力而为),不能保证一定传输成功。以一个交易发布到网络上,未必所有节点都能收到,也未必所有节点收到交易顺序都一致。

谢谢你的支持哦,继续加油.