双指针问题

环形列表I

题目说明

给定一个链表,判断链表中是否有环。

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。

如果链表中存在环,则返回 true 。 否则,返回 false 。

进阶:

你能用 O(1)(即,常量)内存解决此问题吗?

示例 1:

image-20210114100453506

输入:head = [3,2,0,-4], pos = 1
输出:true
解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:

image-20210114100714252

输入:head = [1,2], pos = 0
输出:true
解释:链表中有一个环,其尾部连接到第一个节点。
示例 3:

image-20210114100749569

输入:head = [1], pos = -1
输出:false
解释:链表中没有环。

提示:

链表中节点的数目范围是 [0, 104]
-105 <= Node.val <= 105
pos 为 -1 或者链表中的一个 有效索引

题解

####方法一:哈希表
思路及算法

最容易想到的方法是遍历所有节点,每次遍历到一个节点时,判断该节点此前是否被访问过。

具体地,我们可以使用哈希表来存储所有已经访问过的节点。每次我们到达一个节点,如果该节点已经存在于哈希表中,则说明该链表是环形链表,否则就将该节点加入哈希表中。重复这一过程,直到我们遍历完整个链表即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
pulic class solution{
public boolen hascirle(ListNode head){
Set<ListNOde> seen = new HashSet<ListNode>();
while( head !=null){
if(!seen.add(head)){
return true;
}
head = head.next;
}
return false;

}
}

#####复杂度分析

时间复杂度:O(N)O(N),其中 NN 是链表中的节点数。最坏情况下我们需要遍历每个节点一次。

空间复杂度:O(N)O(N),其中 NN 是链表中的节点数。主要为哈希表的开销,最坏情况下我们需要将每个节点插入到哈希表中一次。

方式二;双指针–快慢指针

方法需要读者对「Floyd 判圈算法」(又称龟兔赛跑算法)有所了解。

假想「乌龟」和「兔子」在链表上移动,「兔子」跑得快,「乌龟」跑得慢。当「乌龟」和「兔子」从链表上的同一个节点开始移动时,如果该链表中没有环,那么「兔子」将一直处于「乌龟」的前方;如果该链表中有环,那么「兔子」会先于「乌龟」进入环,并且一直在环内移动。等到「乌龟」进入环时,由于「兔子」的速度快,它一定会在某个时刻与乌龟相遇,即套了「乌龟」若干圈。

我们可以根据上述思路来解决本题。具体地,我们定义两个指针,一快一满。慢指针每次只移动一步,而快指针每次移动两步。初始时,慢指针在位置 head,而快指针在位置 head.next。这样一来,如果在移动的过程中,快指针反过来追上慢指针,就说明该链表为环形链表。否则快指针将到达链表尾部,该链表不为环形链表。

为什么我们要规定初始时慢指针在位置 head,快指针在位置 head.next,而不是两个指针都在位置 head(即与「乌龟」和「兔子」中的叙述相同)?

观察下面的代码,我们使用的是 while 循环,循环条件先于循环体。由于循环条件一定是判断快慢指针是否重合,如果我们将两个指针初始都置于 head,那么 while 循环就不会执行。因此,我们可以假想一个在 head 之前的虚拟节点,慢指针从虚拟节点移动一步到达 head,快指针从虚拟节点移动两步到达 head.next,这样我们就可以使用 while 循环了。

当然,我们也可以使用 do-while 循环。此时,我们就可以把快慢指针的初始值都置为 head。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
puclic class Solution{
public boolen hascycle(ListNode head){
if(head == null || head.next == null) {
return false;
}
ListNode slow = head;
ListNode fast = head.next;
while(slow!=fast){
if(fast==null||fast.next==null){
return false;
}
slow = slow.next;
fast = fast.next.next
}
return true;
}
}
复杂度分析

时间复杂度:O(N)O(N),其中 NN 是链表中的节点数。

当链表中不存在环时,快指针将先于慢指针到达链表尾部,链表中每个节点至多被访问两次。

当链表中存在环时,每一轮移动后,快慢指针的距离将减小一。而初始距离为环的长度,因此至多移动 NN 轮。

空间复杂度:O(1)O(1)。我们只使用了两个指针的额外空间

环形列表II

题目说明

给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。

为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。注意,pos 仅仅是用于标识环的情况,并不会作为参数传递到函数中。

说明:不允许修改给定的链表。

进阶:

你是否可以使用 O(1) 空间解决此题?

示例 1:

image-20210114102706369

输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:

image-20210114102721841

输入:head = [1,2], pos = 0
输出:返回索引为 0 的链表节点
解释:链表中有一个环,其尾部连接到第一个节点。
示例 3:

image-20210114102737481

输入:head = [1], pos = -1
输出:返回 null
解释:链表中没有环。

提示:

链表中节点的数目范围在范围 [0, 104] 内
-105 <= Node.val <= 105
pos 的值为 -1 或者链表中的一个有效索引

题解

方法一:哈希表

一个非常直观的思路是:我们遍历链表中的每个节点,并将它记录下来;一旦遇到了此前遍历过的节点,就可以判定链表中存在环。借助哈希表可以很方便地实现。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class Solution {
public ListNode detectCycle(ListNode head) {
ListNode pos = head;
Set<ListNode> visited = new HashSet<ListNode>();
while (pos != null) {
if (visited.contains(pos)) {
return pos;
} else {
visited.add(pos);
}
pos = pos.next;
}
return null;
}
}
复杂度分析

时间复杂度:O(N)O(N),其中 NN 为链表中节点的数目。我们恰好需要访问链表中的每一个节点。

空间复杂度:O(N)O(N),其中 NN 为链表中节点的数目。我们需要将链表中的每个节点都保存在哈希表当中。

方法二:双指针–快慢指针

我们使用两个指针,\textit{fast}fast 与 \textit{slow}slow。它们起始都位于链表的头部。随后,\textit{slow}slow 指针每次向后移动一个位置,而 \textit{fast}fast 指针向后移动两个位置。如果链表中存在环,则 \textit{fast}fast 指针最终将再次与 \textit{slow}slow 指针在环中相遇。

如下图所示,设链表中环外部分的长度为 aa。\textit{slow}slow 指针进入环后,又走了 bb 的距离与 \textit{fast}fast 相遇。此时,\textit{fast}fast 指针已经走完了环的 nn 圈,因此它走过的总距离为 a+n(b+c)+b=a+(n+1)b+nca+n(b+c)+b=a+(n+1)b+nc

image-20210114103031586

根据题意,任意时刻,\textit{fast}fast 指针走过的距离都为 \textit{slow}slow 指针的 22 倍。因此,我们有

a+(n+1)b+nc=2(a+b) \implies a=c+(n-1)(b+c)
a+(n+1)b+nc=2(a+b)⟹a=c+(n−1)(b+c)

有了 a=c+(n-1)(b+c)a=c+(n−1)(b+c) 的等量关系,我们会发现:从相遇点到入环点的距离加上 n-1n−1 圈的环长,恰好等于从链表头部到入环点的距离。

因此,当发现 \textit{slow}slow 与 \textit{fast}fast 相遇时,我们再额外使用一个指针 \textit{ptr}ptr。起始,它指向链表头部;随后,它和 \textit{slow}slow 每次向后移动一个位置。最终,它们会在入环点相遇。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public class Solution {
public ListNode detectCycle(ListNode head) {
if (head == null) {
return null;
}
ListNode slow = head, fast = head;
while (fast != null) {
slow = slow.next;
if (fast.next != null) {
fast = fast.next.next;
} else {
return null;
}
if (fast == slow) {
ListNode ptr = head;
while (ptr != slow) {
ptr = ptr.next;
slow = slow.next;
}
return ptr;
}
}
return null;
}
}

#####复杂度分析

时间复杂度:O(N)O(N),其中 NN 为链表中节点的数目。在最初判断快慢指针是否相遇时,\textit{slow}slow 指针走过的距离不会超过链表的总长度;随后寻找入环点时,走过的距离也不会超过链表的总长度。因此,总的执行时间为 O(N)+O(N)=O(N)O(N)+O(N)=O(N)。

空间复杂度:O(1)O(1)。我们只使用了 \textit{slow}, \textit{fast}, \textit{ptr}slow,fast,ptr 三个指针。

谢谢你的支持哦,继续加油.